4-7 Transforming Formulas

Objective: To transform a formula.
Example 1 Solve the formula $F=m a$ for m. State the restrictions, if any, for the formula obtained to be meaningful.

Solution $\quad F=m a \quad$ To get m alone on one side, divide both sides by a.
$\frac{F}{a}=m, a \neq 0 \quad$ The denominator cannot be 0 .

Solve the given formula for the indicated variable. State the restrictions, if any, for the formula obtained to be meaningful.

1. $C=\pi d$ for d
2. $F=m a$ for a
3. $I=p r t$ for t
4. $V=B h$ for h
5. $d=r t$ for t
6. $s=g t^{2}$ for g

Example 2 The formula $A=\frac{1}{2} h(a+b)$ gives the area of a trapezoid with bases a units and b units and with height h units. Use this formula to solve for the variable b in terms of A, h, and a. State the restrictions, if any, for the formula obtained to be meaningful.

Solution

$$
\begin{aligned}
A & =\frac{1}{2} h(a+b) & & \text { To get clear of fractions, multiply both sides by } 2 . \\
2 A & =h(a+b) & & \text { Divide both sides by } h . \\
\frac{2 A}{h} & =a+b & & \text { Subtract } a \text { from both sides. } \\
\frac{2 A}{h}-a & =b, h \neq 0 & & \text { The denominator cannot be } 0 .
\end{aligned}
$$

Solve the given formula for the indicated variable. State the restrictions, if any, for the formula obtained to be meaningful.
7. $A=\frac{1}{2} b h$ for h
8. $b=2 b+y$ for y
9. $A=\frac{1}{2} h(b+c)$ for h
10. $A=P+P r t$ for r
11. $a=2(l+w)$ for l
12. $C=\frac{5}{9}(F-32)$ for F
\qquad

4-7 Transforming Formulas (continued)

Example 3 Solve the formula $C=\frac{m v^{2}}{r}$ for r. State the restrictions, if any, for the formula obtained to be meaningful.

Solution

$$
\begin{aligned}
C & =\frac{m v^{2}}{r} & & \text { To get } r \text { out of the denominator, multiply both sides by } r . \\
C r & =m v^{2} & & \text { To get } r \text { alone on one side, divide both sides by } C . \\
r & =\frac{m v^{2}}{C}, C \neq 0 & & \text { The denominator cannot be } 0 .
\end{aligned}
$$

Solve the given formula for the indicated variable. State the
restrictions, if any, for the formula obtained to be meaningful.
13. $s=\frac{v}{r}$ for v
14. $d=\frac{m}{v}$ for m
15. $C=\frac{m \nu^{2}}{r}$ for m
16. $2 a x+1=a x+5$ for x
17. $a=\frac{v-u}{t}$ for u
18. $v^{2}=u^{2}+2 a s$ for a
19. $S=\frac{n}{2}(a+1)$ for a
20. $m=\frac{x+y+z}{3}$ for x
21. $l=a+(n-1) d$ for d
22. $A=\frac{a+b+c+d}{4}$ for b
23. $3 b y-2=2 b y+1$ for b
24. $3 a w+1=a w-7$ for a
25. $a x+b=c$ for b
26. $D=\frac{a}{2}(2 t-1)$ for a
27. $a m-b m=c$ for a
28. $q=1+\frac{P}{100}$ for P

Mixed Review Exercises

Simplify.

1. $(y-4)(y+2)$
2. $(2 n-3)(3 n-4)$
3. $a[3 a-2(4+a)]$
4. $x y(x-2 y)$
5. $3 x\left(x^{2}-2 x+3\right)$
6. $\left(-4 x^{2}\right)^{3}$
7. $n^{2} \cdot n^{3} \cdot n^{4}$
8. $\left(2 a^{2}\right)^{3} \cdot\left(3 a^{3} b^{2}\right)$
9. $(x+6)(x-5)$
10. $(a+2 b) a b$
11. $(4 m+5)(8 m+7)$
12. $2 y^{2}\left(y^{3}+2 y-1\right)$
