4–7 Transforming Formulas

Objective: To transform a formula.

Example 1	Solve the formula $F = ma$ for m. State the restrictions, if any, for the formula obtained to be meaningful.	
Solution	F = ma	To get m alone on one side, divide both sides by a .
	$\frac{F}{a} = m, a \neq 0$	The denominator cannot be 0.

Solve the given formula for the indicated variable. State the restrictions, if any, for the formula obtained to be meaningful.

1. $C = \pi d$ for d	2. F = ma for a
3. $I = prt$ for t	4. V = Bh for h
5. $d = rt$ for t	6. $s = gt^2$ for g

Example 2The formula $A = \frac{1}{2}h(a + b)$ gives the area of a trapezoid with bases a units
and b units and with height h units. Use this formula to solve for the variable b in
terms of A, h, and a. State the restrictions, if any, for the formula obtained to be
meaningful.**Solution** $A = \frac{1}{2}h(a + b)$ To get clear of fractions, multiply both sides by 2.2A = h(a + b)Divide both sides by h. $\frac{2A}{h} = a + b$ Subtract a from both sides. $\frac{2A}{h} - a = b, h \neq 0$ The denominator cannot be 0.

Solve the given formula for the indicated variable. State the restrictions, if any, for the formula obtained to be meaningful.

 7. $A = \frac{1}{2}bh$ for h 8. b = 2b + y for y

 9. $A = \frac{1}{2}h(b + c)$ for h 10. A = P + Prt for r

 11. a = 2(l + w) for l 12. $C = \frac{5}{9}(F - 32)$ for F

NAME _

4-7 Transforming Formulas (continued)

Example 3	Solve the formula $C =$ obtained to be meaning	$\frac{mv^2}{r}$ for r. State the restrictions, if any, for the formula gful.
Solution	$C = \frac{mv^2}{r}$	To get r out of the denominator, multiply both sides by r .
	$Cr = mv^2$	To get r alone on one side, divide both sides by C .
	$r=\frac{mv^2}{C},C\neq 0$	The denominator cannot be 0.

Solve the given formula for the indicated variable. State the restrictions, if any, for the formula obtained to be meaningful.

13. $s = \frac{v}{r}$ for v	14. $d = \frac{m}{v}$ for m
$15. C = \frac{mv^2}{r} \text{ for } m$	16. $2ax + 1 = ax + 5$ for x
$17. \ a = \frac{v - u}{t} \text{ for } u$	18. $v^2 = u^2 + 2as$ for a
19. $S = \frac{n}{2}(a + 1)$ for a	20. $m = \frac{x + y + z}{3}$ for x
21. $l = a + (n - 1)d$ for d	22. $A = \frac{a+b+c+d}{4}$ for b
23. $3by - 2 = 2by + 1$ for b	24. $3aw + 1 = aw - 7$ for a
25. $ax + b = c$ for b	26. $D = \frac{a}{2}(2t - 1)$ for a
27. $am - bm = c$ for a	28. $q = 1 + \frac{P}{100}$ for P

Mixed Review Exercises

Simplify.

1. $(y - 4)(y + 2)$	2. $(2n - 3)(3n - 4)$
3. $a[3a - 2(4 + a)]$	4. $xy(x - 2y)$
5. $3x(x^2 - 2x + 3)$	6. $(-4x^2)^3$
7. $n^2 \cdot n^3 \cdot n^4$	8. $(2a^2)^3 \cdot (3a^3b^2)$
9. $(x + 6)(x - 5)$	10. $(a + 2b)ab$
11. $(4m + 5)(8m + 7)$	12. $2y^2(y^3 + 2y - 1)$